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Abstract

In this article\ an asymmetric theory of nonlocal elasticity is developed on the basis of three dimensional
atomic lattice model\ the Galileo invariance for constitutive equations and by use of Fourier transformation
of generalized function and energy method[ It is shown that nonlocal characteristic functions "or constitutive
parameters of internal elastic energy# can be explicitly expressed in terms of interacting forces connecting
atoms\ and the general model of nonlocal theory with rotation e}ects is asymmetric[ Both symmetric stress
and anti!symmetric stress is a nonlocal function of strain and local rotation for anisotropic materials[ For
isotropic materials\ symmetric stress is only a nonlocal function of strain\ while antisymmetric stress is only
a nonlocal function of local rotation[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

W[ Voigt assumed that the transfer of interaction between two neighborhood elements of a body
is not only by means of force vectors\ but also by means of face moment vectors and body moment
vectors^ while the moment vectors make the stress tensor asymmetric "see Voigt\ 0783#[ The
displacement and rotation of a point in continuum media is correspondent with force and moment
vectors respectively[ Rotation in continuum mechanics can be divided into two kinds[ One is
independent rotation called micro!polar rotation[ Another is anti!symmetric part of displacement
gradient _eld called local rotation[ Based on mechanical analysis between face moment acting on
an in_nitesimal element and the di}erent rotation\ the micro!polar theory and the couple stress
theories have been developed respectively "see Cosserat\ 0898^ Mindlin and Tiersten\ 0851^ Eringen\
0865#[

For asymmetric theories on the body moment "or body couple#\ Eringen "0865# _rst found
out that the residual of nonlocal angular momentum\ called the nonlocal body couple\ can make
stress asymmetric[ But he ignored it[ Kunin "0872# commenced on the theory of nonlocal symmetric
quasi!continuum[ {{[ [ [ a nonsymmetric stress tensor is necessarily associated with a weakly nonlocal
theory of media of simple structure[ This connected with the fact that in the above mentioned
theories the stress tensor is introduced in a formal manner\ by analogy with the local theory of
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elasticity and without due consideration of speci_c features of the nonlocal model||[ Gao and Tai
"0889#^ Gao and Chen "0881# and Gao and Lin "0882# have derived the constitutive equation of
nonlocal body moment associated with local rotation based on the axiom system of nonlocal
continuum _eld and nonlocal quasicontinuum theory[

In this paper "which is Part 0 of nonlocal!asymmetric theory#\ the nonlocal asymmetric theory
is studied based on atomic lattice model and the three dimensional quasicontinuum _eld theory\
by use of Fourier transformation of generalized functions[ First\ the rotation e}ect on the internal
energy of a body and integral form of the elastic internal energy from the restriction of the
Galileo invariance for constitutive equations are examined[ And then\ the constitutive equation of
asymmetric stress\ divided into two parts] symmetric stress and antisymmetric stress\ is derived\ in
which the constitutive parameters are dependent on micro!properties of atoms interconnecting[
For anisotropic materials\ both symmetric stress and antisymmetric stress are nonlocal functions
of strain and local rotation[ For isotropic materials\ the symmetric stress is only a nonlocal function
of strain\ while the antisymmetric stress is only a nonlocal function of local rotation[ In Part 1\ we
will develop the nonlocal!asymmetric theory based on the axiom system of nonlocal continuum
_eld theory and investigate the relationship between nonlocal theory\ higher gradient theory and
couple stress theory[

1[ The contribution of rotation to the internal energy of a body

In the atomic theory\ covalent bonds existing in the interaction among the atoms are strongly
oriented[ A disturbance of lattice orientation at balance state excited by external moment makes
the relative movements of neighboring atom lattices[ The mechanical response of the relative
movements can be represented by stretch springs and rotation springs\ or by an elastic stick with
both ends connecting to the neighboring atoms\ as shown in Fig[ 0 "see Jauhary\ 0845#[

Let us suppose a coordinate system in a three dimensional Euclidean space E2 for the discrete
lattice model with three covariant base vectors ea "a � 0\1\2#[ The elementary volume constructed
on ea forms a parallelepiped volume associated with an elementary cell of the lattice[ Points of the
lattice are called knots[ The position vector of a lattice knot is expressed as n � na ea"n

a is an
arbitrary integer#[ The covariant metric tensor is equal to a scalar product of two covariant base
vectors\ i[e[ `ab � ea = eb[ The reciprocal to the covariant base vector ea is called the converse base
vector\ given by ea = eb � db

a [ The converse metric tensor is de_ned as `ab � ea = eb[
First the internal energy caused by atomic lattice rotations can be expressed as

Fu � Fu ðu"n#Ł "0#

here u"n# " � uaea# is a rotation angle vector at the lattice knot n[
For small rotation\ Fu can be expanded in a series of u"n# as

Fu � c9¦s
n

cl
0ul"n#¦

0

1
s
n

s
n?

clm
1 "n\ n?#ul"n#um"n?#¦ [ [ [ "1#

The constant c9\ being the energy at a balance state can be ignored[ In the neighborhood of balance
position\ cl

0"n# � 9[ Therefore\ the _rst order approximation of the internal energy is
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Fig[ 0[ "a# Rigid body rotation and "b# local rotation of deformable body "body couple m#[

Fu �
0

1
s
n

s
n?

clm"n\ n?#ul"n#um"n?# "2#

here the subscript 1 of clm
1 "n\ n?# is eliminated for convenience sake[

Due to the invariance of internal energy with respect to a rigid body rotation and the homogeneity
assumption of a body\ the parameters clm"n\ n?# have

"i# clm"n\ n?# � clm"=n−n?=# "3#

"ii# clm"9# � −s
n

? clm"n# or s
n

clm"n# � 9 "4#

where S? indicates the summation\ but n � 9 "see Gao and Lin\ 0881 for detailed discussion#[
The consequent of eqn "3# and eqn "4# is

s
n

s
n?

clm"n\ n?#ul"n#um"n# � s
n

s
n?

clm"n\ n?#ul"n?#um"n?# � 9 "5#

If we de_ne that]

Glm"n# � −clm"n#^ n $ 9 "6#

The internal energy can be rewritten as



J[ Gao : International Journal of Solids and Structures 25 "0888# 1836Ð18471849

Fu �
0

3
s
n

s
n?

Glm"=n−n?=#ðul"n#−um"n?#Łðul"n#−um"n?#Ł "7#

The internal energy associated with rotation"which can be either local rotation or polar rotation#
can be expressed as a function of the di}erence of rotation angles of lattice knots representing
relative rotation[ The constitutive functions Glm are determined by the gravitation feature among
atoms and satisfy the binding condition given by eqn "4#[

To develop a continuum model based on the behavior of atomic lattice model\ we de_ne the
continuum _eld isomorphic to the discrete _eld\ so that the value of continuum _eld at x where
the atom is located is equal to that of a discrete atom "or lattice knot#[ The continuum function
can be obtained by the interpolating function in quasicontinuum _eld theory[ The interpolating
function is de_ned as

db"x# �
0

"1p#2 gB

exp"ix[k# dk �
0

p2V
t
2

b�0

sin"xbp#

xb

"8#

where V9 is the primitive cell|s volume constructed by the frame "ea#\ B is parallelepiped\ given by

B] ð−p ¾ kb ¾ p^ b � 0\ 1\ 2Ł "09#

It is noted that the interpolating function dB"x# satis_es

dB"9# �
0

V9

^ dB"n# � 9 "n � 9# "00#

Any discrete function f"n# converging rapidly with =n= : � can be made to become a continuum
function f"x# by use of the above interpolating function dB"x# as follows

f"x# � s
n

V9f"n#dB"x−n# "01#

The Fourier transform of the function f"x# is given by

f"k# � gV9

f "x# exp"−ik = x# dx "02#

According to the generalized function theory\ the Fourier transform has established the simply
isomorphic correspondence among topological spaces N"B# " f"n# $ N"B##\ X"B# " f"x# $ X"B## and
K"B#" f"k# $ K"B##[ That is\ the one!to!one correspondence f"n#t f"x#t f"k# is well guaranteed
by the condition of truncating the Fourier transform f"k# of function f"x# and the uniqueness of
the expansion in eqn "01# and eqn "02#[ Due to properties of interpolating function dB"x#\ the
continuum function f"x# has f"x# =x�n � f"n#[ If the functions `"n# "$ N"B##\ `"x# "$ X"B## and `"k#
"$ K"B##\ the Parseval equality gives the relation

gV9

f¹"x#g"x# dx � gB

f¹"k#`"k# dk � s
n

f¹"n#`"n# "03#

where f¹"x#\ f¹"k#\ f¹"n# are adjunct of complex functions f"x#\ f"k#\ f"n#[
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According to the characteristics of the interaction among atoms\ Glm"=n−n?=# is a quick!decreas!
ing function as the increase of =n−n?=[ From the Parseval equality given by eqn "03#\ the internal
energy associated with rotation can be expressed as the integral of continuous functions\ given
by

Fu �
0

3 gV gV

Glm"=x−x?=#Ul"x\ x?#Um"x\ x?# dx dx? "04#

where Ul"x\x?# � ul"x#−ul"x?#^ the continuous functions are given by

Glm"=x−x?=# � s
n

s
n?

V1
9G

lm"=n−n?=#dB"x−n#dB"x?−n?#

ul"x# � s
n

V9ul"n#dB"x−n# "05#

The internal energy of rotation in continuum function space satis_es the Galileo invariance and
has the same form as that obtained from asymmetric model of nonlocal continuum _eld theory
"Gao and Tai\ 0889#[ In addition\ expanding the rotation ul"x?# at x leads to

Fu � Glmab1aul"x#1bum"x# "06#

which is the internal energy of rotation in the couple stress theory without couple terms of rotation
with strain[

It has been shown that the location rotation makes a very important contribution to the internal
energy and has di}erent characteristics from rigid body rotation due to nonlocal e}ect[ Also\ the
couple stress model can be regarded as the _rst order approximation of nonlocal theory with local
rotation and speci_c model of higher gradient theory[

2[ Elastic internal energy

According to the Born model of an atomic lattice regarded as a system of pointwise atomic
particles situated at knots of the lattice\ the elastic internal energy of the medium consisting of a
group of atomic lattices is a function of displacement _eld u"n#[ For small displacement\ the
potential energy of the medium can be expressed as

F �
0

1
s
n

s
n?

Clm"n\ n?#ul"n#um"n?# "07#

where u"n# is the displacement of the atom at point n^
In eqn "07#\ Clm"n\ n?# are the constants constituting the parameters of the model called the force

constants\ connecting the atomic lattices at n and n?[ And clm"n\ n?# has symmetry with respect to
n and n?\ i[e[\ Clm"n\ n?# � Cml"n?\ n#[ Due to the generalized function theory mentioned above\ the
internal energy can also be expressed as follows]
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F �
0

1 gV gV

Clm"x\ x?#ul"x#um"x?# dx dx?

�
0

"1p#2 gB gB

Clm"k\ k?#ul"k#um"k?# dk dk? "08#

where

Clm"k\ k?# �
0

"1p#2
s
n

s
n?

Clm"n\ n?# exp−"k = n−k? = n?#

�
0

"1p#2 gV gV

Clm"x\ x?# exp−"k = x−k? = x?# dx dx? "19#

The internal energy should satisfy the Galileo invariance such that when a rigid body movement
is superposed on a deformation body\ its internal energy is invariable[

First\ let us consider rectilinear uniform motion\ given by

u�"x# � u"x#¦u9 "u9 is a constant vector# "10#

The Galileo invariance requires that

F"u# �
0

1 gV gV

Clm"x\ x?#ul"x#um"x?# dx dx?

�
0

1 gV gV

Clm"x\ x?#u�l"x#u�m"x?# dx dx? � F"u�# "11#

By substituting eqn "10# into eqn "11#\ expanding the two sides of the equation and eliminating
the same terms\ and then from the correlations among Clm"x\ x?#\ Clm"n\ n?# and Clm"k\ k?# and
symmetry of Clm"k\ k?# with respect of k and k?\ we can write Clm"k\ k?# as follows]

Clm"k\ k?# � −kak?bc
lmab"k\ k?#

� ikaik?b"c
"la#"mb# "k\ k?#¦c"la#ðmbŁ "k\ k?##¦ikaik?b"c

ðlaŁ ðmbŁ "k\ k?#¦cðlaŁ"mb# "k\ k?## "12#

By substituting eqn "12# into eqn "19# and from the properties of Parseval equation and Fourier
transformation\ the internal energy of quasicontinuum can be expressed as

F �
0

1 gV gV

1lua"x#1m?ub"x?#ðc"la#"mb# "x\ x?#¦c"la#ðmbŁ "x\ x?#

¦cðlaŁ ðmbŁ "x\ x?#¦cðlaŁ"mb# "x\ x?#Ł dx dx?

�
0

1 gV gV

1"lua# "x#1"m?ub# "x?#c"la#"mb# "x\ x?# dx dx?
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¦
0

1 gV gV

1"lua# "x#1"mubŁ "x?#c"la#ðmbŁ "x\ x?# dx dx?

¦
0

1gV gV

1ðluaŁ "x#1"mub# "x?#cðlaŁ"mb# "x\ x?# dx dx?

¦
0

1 gV gV

1"lua# "x#1ðmubŁ "x?#c"la#ðmbŁ "x\ x?# dx dx? "13#

where " # indicates the symmetrization of indices\ ð Ł indicates the anti!symmetrization of indices[
Then\ let us consider a rigid body rotation superposed upon the body[ We de_ne

u�"x# � u"x#¦v9×x "v9 is a constant vector# "14#

by substituting eqn "14# into eqn "13# and due to Galileo invariance\ the constitutive functions
c"la#ðmbŁ"x\ x?#\ cðlaŁ"mb#"x\ x?# and cðlaŁ ðmbŁ"x\ x?# have to satisfy

gV

c"la#ðmbŁ "x\ x?# dx? � 9

gV

cðlaŁ"mb# "x\ x?# dx � 9

gV

cðlaŁ ðmbŁ "x\ x?# dx � 9

gV

cðlaŁ ðmbŁ "x\ x?# dx? � 9 "15#

"See Gao and Lin "0882# for detailed discussion#[
In this case\ we can rewrite the internal energy of a quasicontinuum medium as follows

F �
0

1 gV gV

1"lua# "x#1mub# "x?#c"la#"mb# "x\ x?# dx dx?

¦
0

1 gV gV

1"lua# "x#"uk"x?#−uk"x##C "la#k"x\ x?# dx dx?

¦
0

1 gV gV

1"m?ub# "x?#"uk"x#−uk"x?##Ck"mb# "x\ x?# dx dx?

¦
0

3 gV gV

"uk"x#−uk"x?##"u("x?#−u("x##Ck("x\ x?# dx dx? "16#

here
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ua �
0

1
$=bg

a 1ðbugŁ

Ck"mb# � $= =k
la cðlaŁ"mb#

C "la#k � $= =k
mb c"la#ðmbŁ

Ck( � $= =k
la $= =(

mb cðlaŁ ðmbŁ "17#

and $bg
a \ $g

ab are Eddington tensors[
The internal energy consists of three parts] strain energy\ internal energy of local rotation and

internal energy from coupling of strain and local rotation[ If the coupling action of strain and
local rotation is neglected\ we have

F �
0

1 gV gV?

1"lua# "x#1"mub# "x?#c"la#"mb# "x\ x?# dx dx?

¦
0

3 gV gV?

"uk"x#−uk"x?##"u("x?#−u("x##Ck("x\ x?# dx dx? "18#

which is exactly the same as the potential energy obtained from the asymmetric theory of nonlocal
elasticity "Gao and Tai\ 0889#[

In fact\ for isotropic materials\ the constitutive parameters C"la#k\ Ck"mb# should be isotropic
tensors of third rank[ From the representative theorem of isotropic tensors\ the third rank isotropic
tensor is b$lmk "b is a constant# with the anti!symmetry of indices[ Therefore\ C"la#k\ Ck"mb# are equal
to zero[ Also eqn "18# can be regarded as internal energy of isotropic material[ For anisotropic
materials\ the distortion e}ects between local rotation and symmetric stress\ strain and anti!
symmetric stress play an important role in the internal energy[ If the e}ect of local rotation is
neglected\ the potential energy is reduced to the classic model of nonlocal quasicontinuum _eld
"Kunin\ 0872#[

3[ Constitutive law and _eld equations

To derive the constitutive equations and _eld equations in the quasicontinuum _eld theory\ we
de_ne the Lagrangian of the Born model system as follows

L �
0

1
`ab s

n

m"n#u¾a"n#u¾b"n#−
0

1
s
n

s
n?

Cab"n\ n?#ua"n#ub"n?#−s
n

qa"n#ua"n# "29#

where m"n# is the mass of the atom at point n^ qa"n# is the external force applied to the atom at
point n^ u¾ "n# is a velocity vector of the atom at point n[

According to the Parseval equation\ the Lagrangian L can be expressed as an integral of
continuum functions as follows
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L �
0

1 gV gV?

`abr"x#u¾a"x#u¾b"x?#d"x−x?# dx dx?−
0

1 gV gV?

Cab"x\ x?#ua"x#ub"x?# dx dx?

−gV

qa"x#ua"x# dx "20#

The motion equation is obtained by the energy principle that of all admissive movements\ the
real movement can be distinguished by the variational equation that dL � 9 and is given by

r"x#u�a"x#¦gV

Cab"x\ x?#ub"x?# dx? � qa"x# "21#

From the Parseval equation and the Galileo invariance discussed in previous section\ the Fourier
transform of the second term in eqn "21#\ which is an integral de_ned as I\ can be expressed as
follows

FðIŁ �
0

"1p#2 gB

Cab"k\ k?#ub"k?# dk?

�
0

"1p#2 gB

iklikmc
lamb"k\ k?#ub"k?# dk? "22#

Due to formulae of Fourier transformation\ the inverse transformation of FðIŁ gives

I � 1lgV

clamb"x\ x?#"1mub"x?## dx? "23#

By substituting eqn "23# into the previous motion equation given by eqn "21#\ we obtain

r"x#u�a"x#¦1ls
la"x# � qa"x# "24#

where the constitutive equation is

sla"x# � gV

clamb"x\ x?#"1mub"x?## dx? "25#

It is noted that the motion equation is similar to that of classic elasticity^ but the constitutive
equation of stress is di}erent and can be decomposed into two parts] symmetric and antisymmetric[
In addition\ from the restriction conditions on constitutive parameters c"la#ðmbŁ"x\ x?#\ cðlaŁ"mb#"x\ x?#
and cðlaŁ ðmbŁ"x\ x?# given by the Galileo invariance and the homogeneity\ assumption of materials
requires that clamb"x\ x?# � clamb"=x−x?=# etc[\ both symmetric stress and antisymmetric stress can
be expressed explicitly in terms of nonlocal functions of strain and local rotation given by

sla"x# � s"la# "x#¦sðlaŁ "x# "26#

and

s"la# "x# � gV

c"la#"mb# "=x−x?=#1"mub# "x?# dx?¦gV

C "la#d"=x−x?=#"ud"x?#−ud"x## dx?
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sðlaŁ "x# � gV

cðlaŁ"mb# "=x−x?=#1"mub# "x?# dx?¦gV

C ðlaŁd"=x−x?=#"ud"x?#−ud"x## dx? "27#

where

C ðlaŁd"=x−x?=# � $==d
mbc

ðlaŁ ðmbŁ "=x−x?=#

C "la#d"=x−x?=# � $==d
mbc

"la#ðmbŁ "=x−x?=# "28#

For isotropic materials\ the constitutive parameters clamb and Clam are isotropic tensors[ So\
the constitutive equations of symmetric stress and antisymmetric stress can be expressed as
follows]

s"(a# "x# � gV

"c0"=x−x?=#`la1"bub# "x?#¦ðc1"=x−x?=#¦c2"=x−x?=#Ł`lm`ab1"bum# "x?##(

sðlaŁ "x# � $ladgV

C9"=x−x?=#"ud"x?#−ud"x## dx? "39#

The constitutive equation of symmetric stress has the same form as that proposed by Eringen
"0865#[ As discussed in section 2\ the constitutive parameters ci"=x−x?=#"i � 0\1\2# and C9"=x−x?=#
called as the nonlocal characteristic functions are determined by the gravitation feature among
interacting atoms\ i[e[ they decrease rapidly as the increase of =x−x?=[ For example\ from the
quasicontinuum theory "see Kunin 0872#\ the one dimensional nonlocal characteristic function
C9"=x=# can be expressed as follows

C9"x# � s
n

C"n#dB"x−na# "30#

where C"n# is interacting moment connecting atomic lattices at points n and 9[ And

dB"x# �

sin0p
x

a1
px

^ =x= ¾ a

� 9^ =x= − a "31#

If the interaction of the nearest atom is only considered\ C9"=x=# is explicitly expressed as follows

C9"x# � C9dB"x# � C9

sin0
p

a
x1

px
^ =x= ¾ a

� 9^ =x= − a "32#

A linear approximation of the nonlocal characteristic function C9"=x=# can be made by the linear
function given by
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Fig[ 1[

C9"x#
a

C9

� 0−
=x=
a

^ =x= ¾ a

� 9^ =x= − a "33#

Figure 1 shows that both characteristic functions of C9"=x=# have a gravitation feature[ A more
detailed discussion on it can be found in the previous work "Gao and Chen\ 0881#[

It is noted that the due physical variable of the rotation is moment[ Therefore\ the nonlocal
moment can be de_ned as nonlocal function of local rotation\ given by

rLd"x# � gV

C9"=x−x?=#"ud"x?#−ud"x## dx? "34#

the antisymmetric stress has the relationship with the moment vector\ given by

rLd"x# �
0

1
$lads

ðlaŁ "x# "35#

In fact\ the moment is residual of nonlocal moment of angular momentum in continuum _eld
theory of nonlocal elasticity\ which is nonlocal function of local rotation[ For the rigid body
rotation\ rLd"x# � 9[

4[ Discussion

In this paper\ the asymmetric theory of nonlocal elasticity has been developed on the basis of
quasicontinuum theory[ The asymmetric stress can be decomposed into symmetric stress and
antisymmetric stress[ Both symmetric stress and anti!symmetric stress for anisotropic materials
are nonlocal functions of strain and di}erence of local rotation for anisotropic materials[ For
isotropic material\ the symmetric stress is a function of strain and anti!symmetric stress is a nonlocal
function of local relative rotation[ The nonlocal constitutive functions\ such as c"la#ðmbŁ"=x−x?=#\
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c"la#"mb#"=x−x?=#\ cðlaŁ ðmbŁ"=x−x?=# and cðlaŁ"mb#"=x−?=# etc[\ are dependent of micro! behavior of atoms
lattice[ It is veri_ed that the nonlocal body moment exists\ plays a very important role in a deformed
body[ It is also shown that both strain and local rotation should be regarded as basic variables of
geometric deformation[ The correspondence deformation mechanism between stresses and local
rotation is nonlocal and dependent of micro!behaviors of inter!atoms[

In the zone of localized deformation\ such as a kink band and a shear band\ the local rotation
is signi_cantly large\ the material is not isotropic\ and the orientation of a lattice is very sensitive
to an external load[ The developed asymmetric model of nonlocal theory provides a useful method
for studying the localized deformation phenomena because the model can describe the in~uence
of orientation of a lattice on the stress status[

It is noted that the asymmetric theory of nonlocal elasticity is a more general model\ which is
based on the general case that both strain and local rotation are considered without any simplifying
assumptions[ If the e}ect of local rotation is neglected\ the model can be reduced to Kroner!
Eringen model in nonlocal elasticity[ If the nonlocal e}ect is neglected\ the anti!symmetric stress
is also zero and constitutive equation of symmetric stress degenerates into that in classic elasticity[
Further discussion of nonlocal!asymmetric theory will be shown in Part 1[
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